
geometry optimization : E(V) and EOS 

In this example we inspect how to optimize the volume and shape of the unit cell in a more explicit 

way, i.e. not entirely relying on the automatic minimization tool that we discussed in the previous 

example. The added benefit of this longer procedure is that it gives access to an Equation of State 

(EOS), from which an important elastic property – the bulk modulus – can be derived.  

The example for this procedure will be the stishovite crystal (a polymorph of SiO2), with precision 

settings that are tested to give a reliable stress tensor: ecutwfc=100, ecutrho=400, 4x4x9 k-points, 

this pseudopotential for Si and this pseudopotential for O. You can start from this experimental cif 

file.  

The input file for Quantum Espresso should look like this: 

&CONTROL 

  calculation='scf', 

  outdir='.', 

  prefix='SiO2-stishovite', 

  pseudo_dir='.', 

  verbosity='low', 

  tprnfor=.true., 

  tstress=.true., 

/ 

 

&SYSTEM 

  ibrav = 0, 

  A = 4.17970, 

  nat = 6, 

  ntyp = 2, 

  ecutwfc=100, 

  ecutrho=400, 

  input_dft='pbe', 

  occupations='smearing', 

  smearing='mv', 

  degauss=0.005d0, 

/ 

 

&ELECTRONS 

  conv_thr=1d-08, 

  mixing_beta=0.7d0, 

/ 

 

CELL_PARAMETERS {alat} 

  1.000000000000000   0.000000000000000   0.000000000000000 

  0.000000000000000   1.000000000000000   0.000000000000000 

  0.000000000000000   0.000000000000000   0.638060147857502 

 

ATOMIC_SPECIES 

  O 15.999400d0 O.pbe-kjpaw.UPF 

  Si 28.085500d0 Si.pbe-n-kjpaw_psl.0.1.UPF 

 

ATOMIC_POSITIONS {crystal} 

  Si   0.0000000000d0   0.0000000000d0   0.0000000000d0 

  Si   0.5000000000d0   0.5000000000d0   0.5000000000d0 

   O   0.3061370000d0   0.3061370000d0   0.0000000000d0 

   O   0.6938630000d0   0.6938630000d0   0.0000000000d0 

   O   0.1938630000d0   0.8061370000d0   0.5000000000d0 

   O   0.8061370000d0   0.1938630000d0   0.5000000000d0 

 

K_POINTS {automatic} 

  4 4 9 0 0 0 

 

https://en.wikipedia.org/wiki/Stishovite
http://www.quantum-espresso.org/wp-content/uploads/upf_files/Si.pbe-n-kjpaw_psl.0.1.UPF
http://www.quantum-espresso.org/wp-content/uploads/upf_files/O.pbe-kjpaw.UPF
http://crystallography.net/cod/1544731.cif
http://crystallography.net/cod/1544731.cif


Run a static calculation for this file (less than 2 minutes). You will notice that the stress tensor is not 

exactly zero, nor are the forces on the oxygen atoms. 

Now prepare 6 other input files, where the lattice parameter a (= the ‘A’ value under &SYSTEM) is 

varied in steps of 0.04 Å above and below the initial value. The (3,3) matrix element under 

CELL_PARAMETERS is the c/a-ratio, and is kept unchanged. This means you have rescaled the unit 

cell (growing and shrinking), without altering its shape. The coordinates of all internal positions are 

kept unchanged too. 

Run these 6 calculations, and write down each time the total energy. The result will be like this 

(verify at least one of them): 

lattice parameter 
a=b (Å) 

lattice 
parameter c (Å) 

Volume 
(Å3) 

energy (Ry) Pressure (xy, 
kbar) 

Pressure (z, 
kbar) 

4.052716 2.585876 42.471743 -260.53643292 455.31 550.28 

4.095050 2.612888 43.816658 -260.56192394 320.74 386.35 

4.137384 2.639900 45.189670 -260.57940824 202.43 241.62 

4.179718 2.666912 46.591068 -260.58959137 98.73 114.13 

4.222052 2.693923 48.021144 -260.59312454 8.16 2.24 

4.264387 2.720935 49.480189 -260.59061396 -70.69 -95.71 

4.306721 2.747947 50.968491 -260.58262898 -139.02 -181.13 

 

If you plot the total energy as a function of unit cell volume (see Fig. 1, ‘static’ data), then a clear 

minimum is visible. You can fit a Birch-Murnaghan equation of state through these data, to have a 

first approximation to the equilibrium volume and bulk modulus. This is the procedure: 

Prepare a text file with two columns, the first column being the unit cell volume (a.u.3 or Å3) of each 

of your 7 calculations, the second column being the corresponding total energy (Ry). Run the ‘ev.x’, 

which will ask you some questions. In this case: units (a.u.3 or Å3), ‘noncubic’ for the type of Bravais 

lattice, and ‘1’ (=’birch1’) for the equation of state (for fcc, bcc and sc lattices, you have to specify the 

lattice parameter in your input text file, for all other ‘noncubic’ lattices, this should be the volume). It 

will give you in return the equilibrium volume and bulk modulus obtained from fitting a Birch-

Murnaghan equation of state through your data points: 

 

The above procedure – changing the volume only, while keeping the cell shape as well as the 

positions of the atoms fixed – is a quick yet approximative way to find a good first guess of the 



equilibrium volume (and bulk modulus). In order to find a correct and precise DFT-prediction for 

equilibrium volume and bulk modulus, the unit cell needs to be fully geometry-optimized at every 

volume in the data set. This means: the volume should be the only degree of freedom in E(V), all 

other parameters are such that the energy cannot be further reduced for that given volume. Only on 

such a data set, the equilibrium volume and bulk modulus obtained from an equation of state fit 

have their correct physical meaning.  

Thanks to the stress tensor formalism in Quantum Espresso, it is quite straightforward to obtain such 

an optimized data set. Inspect the stress tensor obtained in your previous series of calculations (see 

the table above). The xx and yy stress tensor components are different from the zz stress tensor 

component, which means that a non-isotropic stress is required to give the unit cell the given volume 

and shape. For instance, by applying a pressure of 455 kbar along the a- and b-directions, and 550 

kbar along the c-direction, the unit cell can be given a volume of 286.6 a.u.3 and a c/a ratio of 

0.6381. A correct yet tedious procedure would be to optimize c/a and the atomic positions at this 

given volume. One would observe that after this optimization, all components diagonal of the stress 

tensor would become identical: hydrostatic pressure (uniform in all directions). It is easier to go the 

other way around: apply a hydrostatic pressure, and let Quantum Espresso find the lowest-energy 

unit cell that is consistent with that pressure. This is a ‘vc-relax’ type of calculation, with a target 

pressure that is different from zero. For instance, for the lowest volume in the series, the weighted 

average of the diagonal elements of the stress tensor is 490 kbar. Set this value as target pressure, 

and do a vc-relax calculation (expect about 15 minutes). This is the input file: 

&CONTROL 

  calculation='vc-relax', 

  outdir='.', 

  prefix='SiO2-rutile', 

  pseudo_dir='.', 

  verbosity='low', 

  tprnfor=.true., 

  tstress=.true., 

/ 

 

&SYSTEM 

  ibrav = 0, 

  A = 4.17970, 

  nat = 6, 

  ntyp = 2,   

  ecutwfc=100, 

  ecutrho=400, 

  input_dft='pbe', 

  occupations='smearing', 

  smearing='mv', 

  degauss=0.005d0, 

/ 

 

&ELECTRONS 

  conv_thr=1d-08, 

  mixing_beta=0.7d0, 

/ 

 

&IONS 



  ion_dynamics='bfgs', 

/ 

 

&CELL 

  cell_dynamics='bfgs', 

  press=490.d0, 

  press_conv_thr=0.5d0, 

/ 

 

CELL_PARAMETERS {alat} 

  1.000000000000000   0.000000000000000   0.000000000000000 

  0.000000000000000   1.000000000000000   0.000000000000000 

  0.000000000000000   0.000000000000000   0.638060147857502 

 

ATOMIC_SPECIES 

  O 15.999400d0 O.pbe-kjpaw.UPF 

  Si 28.085500d0 Si.pbe-n-kjpaw_psl.0.1.UPF 

 

ATOMIC_POSITIONS {crystal} 

  Si   0.0000000000d0   0.0000000000d0   0.0000000000d0 

  Si   0.5000000000d0   0.5000000000d0   0.5000000000d0 

   O   0.3061370000d0   0.3061370000d0   0.0000000000d0 

   O   0.6938630000d0   0.6938630000d0   0.0000000000d0 

   O   0.1938630000d0   0.8061370000d0   0.5000000000d0 

   O   0.8061370000d0   0.1938630000d0   0.5000000000d0 

 

K_POINTS {automatic} 

  4 4 9 0 0 0 

 

This leads to a unit cell that has a volume of 284.76 a.u.3, subject to the specified pressure. You can 

read the total energy and the lattice parameters for the output file. They are listed in the table 

underneath (verify at least one case). You can plot these data on the same energy-vs-volume graph 

as you used for the static series of calculations (fig. 1). The new data points lie systematically below 

the initial data points. No further optimization of the crystal will lead to an even lower energy at the 

given volumes.  

Ptarget 

(kbar) 
Energy (Ry) a=b (Å) c (Å) Volume (Å3)    

490 -260.53387783 4.020561 2.610435 42.197465    

342 -260.56055037 4.069161 2.633260 43.601715    

215 -260.57859581 4.118576 2.654240 45.022978    

104 -260.58931187 4.170652 2.673465 46.503158    

6 -260.59319463 4.227807 2.690448 48.090021    

-79 -260.59011059 4.293252 2.704146 49.842854    

-152 -260.57863878 4.376967 2.711916 51.954468    
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Fig. 1: Energy versus volume for SiO2 (stishovite). ‘static’ means: varying the volume while keeping cell shape and atom 

positions fixed to an initial (experimental) value. ‘relaxed’ means: full geometry optimization, at this volume. 



By fitting a Birch-Murnaghan equation of state through these new data points, you get the correct 

PBE-prediction for equilibrium volume and bulk modulus of this crystal : 

 

The equilibrium volume (48.23 Å3) is not too much different from the approximate value found 

before. The bulk modulus of 258.4 GPa is now a true physically meaningful bulk modulus, which is 

quite different from the approximate value found before. The column with pressure values is 

physically meaningful too now, and is the predicted hydrostatic pressure that is required to impose 

the volume given in the first column. 

This procedure to obtain the bulk modulus can be used for any crystal, regardless the number of 

degrees of freedom they have. 


